

About USDC

Chartered in 1993

 Industry consortium focused on flat panel display (FPD) manufacturing and infrastructure

 17 companies form the consortium with support from the U.S. Army Research Laboratory (ARL)

USDC's Interactions

Media, Government, & Financial Communities

Voting Members

- Cambridge Display Technology
- dpiX, LLC
- DuPont Displays
- IBM Corporation
- Philips Research USA
- Three-Five Systems
- Universal Display Corporation
- U.S. Army Research Lab
- Defense Advanced Research Projects Agency

General Members

- Displaytech, Inc.
- E-Ink Corporation
- eMagin
- FlexICs Inc.
- Kodak
- iFire Technology
- Iridigm Display Corp.
- Microvision, Inc.
- Versatile Information Products
- White Electronics Designs Corp.

Military & Avionics User Group

- Barco nv BarcoView
- Boeing Company
- General Dynamics Canada
- Honeywell International
- Interface Displays & Controls
- Kaiser Aerospace & Electronics
- L-3 Communications Corp.
- L-3 AMI
- Lawrence Livermore National Labs
- Luxell Technologies
- Rockwell Collins

Army Research Lab & USDC Relationship

ARL

Program Oversight

& Federal R&D \$

USDC

FPD Supply Chain Program & Industry R&D \$

Competitively Bid Projects on Topics of Member & ARL Interest

USDC Program Scope

- USDC projects enhance manufacturing capability for microdisplays, projection systems, organic light emitting diodes (OLEDs) and flexible substrate technology.
- All three tiers of industry are represented in USDC
 - display users
 - display manufacturers and developers
 - equipment, materials and components suppliers.
- Widely shared results optimize efficiency and flexibility, since several alternatives can be simultaneously explored.

2003 Technical Program Spending Plan – as of Oct. 2003

35 projects @ \$30.2M with > 50% industry matching

Ongoing USDC Activity

- Identify and address supply chain gaps by funding R&D projects.
- Promote members in technical and financial forums.
- Provide valuable information, such as technology roadmaps, technical trends and market information
- Foster international cooperation among display consumers, display makers and tools and materials suppliers.

Major OLED Development Issues Displays versus General Lighting

Parameters unique to displays

- Fine patterning
- Contrast
- Pixel switching
- Color saturation (NTSC standard)

Parameters unique to general lighting

- White light with high CRI
- Uniformity over very large area

Parameters in common

- Conversion efficiency (%)
- Luminous efficiency or efficacy (lm/w)
- Luminance (lm/m²)
- Stability (differential aging)
- Lifetime
- Cost
- Environmental protection (encapsulation)
- Materials selection & optimization

OLEDS for Displays versus General Lighting

J Current Density (mA/cm²)

OLED Power Consumption

Target cost/performance parameters for **OLEDs** in diffuse lighting applications

Property	Units	Stage 1	Stage 2	Stage 3	Stage 4
Date	Year	2004	2007	2010	2013
Diode energy efficiency	%	5	12.5	20	30
Diode efficacy	lm/W	20	50	80	120
Color rendering index	CRI	75	80	85	90
Lifetime from 2000 cd/m ²	hours	10K	20K	40K	50K
Maximum panel width	in	14	40	40	>40
Panel thickness	mm	2.0	1.0	0.5	0.5
Panel weight	gm/cm ²	0.5	0.25	0.1	0.1
Fabrication costs	\$/sq m	120	60	40	30

Target cost/performance parameters for OLED displays

Property	Units	Stage 1	Stage 2	Stage 3
Date	Year	2004	2007	2010
System efficiency	%	1	2	4
System efficacy	lm/W	4	6	10
Blue saturation	CIE (x+y)	<0.33	<0.25	<0.2
Green saturation	CIE y	>0.6	>0.7	>0.75
Red saturation	CIE x	>0.65	>0.67	>0.7
Lifetime from 200 cd/m ²	hours	5K	10K	20K
Pixel density	ррі	100	200	200-300
Contrast @ 500 lux	VESA 2.0	50	100	200
Max pixel number		1M	5M	10M
Maximum diagonal size	in	20	40	60
Panel thickness	mm	2.0	1.0	0.5
Maximum voltage swings	V	8	5	3
Panel weight	gm/cm ²	0.5	0.25	0.1
Fabrication costs	\$/sq inch	5.00	1.00	0.50

USDC Member Interest Profile

- OLED development
 - Cambridge Display Tech.
 - DuPont Displays
 - Kodak

- Philips
- Universal Display Corp.

- LED development
 - Displaytech
 - CREE
 - General Electric
 - Lumileds

- Luminus Devices
- Perkin Elmer
- Philips
- Manufacturing Equipment, Processes & Materials
 - 3M
 - Applied Films
 - Avecia
 - CHA Industries
 - Corning
 - Dow Corning

- General Atomics
- General Electric
- Kurt Lesker
- National Starch
- Schott Corp.
- Vitex Systems

OLED Manufacturing Evolution

- Glass substrates (~Gen II LCD tooling), batch processing, glass/metal lid seals > (for market introduction with minimum innovation)
- Plastic substrates (same tooling), batch processing affixed to rigid substrates, plastic cover layer > (use marketing "glitz" & performance features offered by flexible, contourable, light weight, rugged devices)
- Roll-to-Roll {continuous web} processing on plastic film
 (cost driven & larger area capability)

Innovations in Transition to Flexible Substrates

Materials

- Substrates, e.g., PET, PEN, PC, PES, PAR, PNB, PI & metal foils
- Barrier layers & Encapsulants (environmental)
- Hard coats (chemical & scratch resistance)
- Adhesives & Sealants
- Getters
- Transparent conductors

USDC Development Projects

- Substrates > Dow Chemical, Promerus, GE @ \$5.56M
- Barriers > Battelle, Dow Corning, GE, Symmorphix, Vitex @ \$11.25M
- Permeation measurement > Desert Cryogenics, General Atomics @ \$1.02M
- Adhesives & Sealants > National Starch @ \$2.21M
- Transparent conductors > Northwestern Univ., Cabot @ \$2.13M
- Planarization layers > Dow Corning @ \$2.62M

Manufacturing Innovations in Transition to Flexible Substrates

- Manufacturing Tools (batch)
 - Deposition > Lesker, Litrex @ \$6.89M
 - Cleaning > FSI International, Genesis Engineering @ \$2.63M
 - Digital lithography > Agilent @ \$ 2.81M
 - Flexible substrate lamination/delamination > pending
- Transition to Roll-to-Roll (initial target of 24" web)
 - Lithography > Azores @ \$4.09M
 - Deposition > Lesker, CHA Industries @ \$7.75M
 - Factory modeling > AGI @ \$0.2M
 - Inspection > pending
 - Cleaning > pending
 - Etching > pending

Related R&D Programs Flexible Substrates & Emissive Technologies

ARL

- University-based flexible display R&D center
- Initial funding @ \$43.7M for FY 2004-2008
- Follow-on funding @ \$50M for FY 2009-2013
- Meet Army transitional requirements for FCS and OFW

DARPA

- Flexible high-efficiency photovoltaic panels @ source selection
- Immersive imaging systems @ concept white papers > pre-BAA
- Large area macroelectronics @ source selection